博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
线性代数问题集
阅读量:6305 次
发布时间:2019-06-22

本文共 2531 字,大约阅读时间需要 8 分钟。

1.已知$AX=B$,其中$A=\left[\begin{array}{ll}{1} & {2} \\ {2} & {4} \\ {3} & {5}\end{array}\right], B=\left[\begin{array}{ccc}{2} & {5} & {-1} \\ {4} & {10} & {-2} \\ {7} & {9} & {3}\end{array}\right]$,求$X$.


法一.由于\[\left[\begin{array}{cc}{1} & {2} \\ {2} & {4} \\ {3} & {5}\end{array}\right]\left[\begin{array}{lll}{x_{11}} & {x_{12}} & {x_{13}} \\ {x_{21}} & {x_{22}} & {x_{23}}\end{array}\right]=\left[\begin{array}{ccc}{2} & {5} & {-1} \\ {4} & {10} & {-2} \\ {7} & {9} & {3}\end{array}\right],\]

则|\[\left[\begin{array}{ll}{1} & {2} \\ {3} & {5}\end{array}\right]\left[\begin{array}{lll}{x_{11}} & {x_{12}} & {x_{13}} \\ {x_{21}} & {x_{22}} & {x_{23}}\end{array}\right]=\left[\begin{array}{ccc}{2} & {5} & {-1} \\ {7} & {9} & {3}\end{array}\right],\]

于是\[\left[\begin{array}{ccc}{x_{11}} & {x_{12}} & {x_{13}} \\ {x_{21}} & {x_{22}} & {x_{23}}\end{array}\right]=\left[\begin{array}{cc}{1} & {2} \\ {3} & {5}\end{array}\right]^{-1}\left[\begin{array}{ccc}{2} & {5} & {-1} \\ {7} & {9} & {3}\end{array}\right]=\left[\begin{array}{ccc}{4} & {-7} & {11} \\ {-1} & {6} & {-6}\end{array}\right].\]

法二.注意到\[\left[\begin{array}{cc}{1} & {2} \\ {2} & {4} \\ {3} & {5}\end{array}\right]\left[\begin{array}{l}{x_{11}} \\ {x_{21}}\end{array}\right]=\left[\begin{array}{l}{2} \\ {4} \\ {7}\end{array}\right],\left[\begin{array}{ll}{1} & {2} \\ {2} & {4} \\ {3} & {5}\end{array}\right]\left[\begin{array}{l}{x_{12}} \\ {x_{22}}\end{array}\right]=\left[\begin{array}{c}{5} \\ {10} \\ {9}\end{array}\right],\left[\begin{array}{cc}{1} & {2} \\ {2} & {4} \\ {3} & {5}\end{array}\right]\left[\begin{array}{c}{x_{13}} \\ {x_{23}}\end{array}\right]=\left[\begin{array}{c}{-1} \\ {-2} \\ {3}\end{array}\right],\]

则\[\left[\begin{array}{l}{x_{11}} \\ {x_{21}}\end{array}\right]=\left[\begin{array}{l}{4} \\ {-1}\end{array}\right],\quad\left[\begin{array}{l}{x_{12}} \\ {x_{22}}\end{array}\right]=\left[\begin{array}{c}{-7} \\ {6}\end{array}\right],\quad\left[\begin{array}{l}{x_{13}} \\ {x_{23}}\end{array}\right]=\left[\begin{array}{c}{11} \\ {-6}\end{array}\right].\]因此\[X=\left[\begin{array}{ccc}{4} & {-7} & {11} \\ {-1} & {6} & {-6}\end{array}\right].\]


常用级数\[(1+x)^{1/x}=e-\frac{e x}{2}+\frac{11 e x^{2}}{24}-\frac{7 e x^{3}}{16}+\frac{2447 e x^{4}}{5760}+O\left(x^{5}\right),\quad x\to 0\]

\[\int_{0}^{1} \sqrt{\frac{x}{1-x}} d x=\frac{\pi}{2}.\]

 \[\int_{0}^{1} \int_{0}^{1} \frac{\log \left(x-x^{2}\right)-\log \left(y-y^{2}\right)}{\left(x-x^{2}\right)-\left(y-y^{2}\right)} d x d y=7\zeta(3).\]

转载于:https://www.cnblogs.com/Eufisky/p/10987674.html

你可能感兴趣的文章
4星|《先发影响力》:影响与反影响相关的有趣的心理学研究综述
查看>>
IE8调用window.open导出EXCEL文件题目
查看>>
python之 列表常用方法
查看>>
vue-cli脚手架的搭建
查看>>
在网页中加入百度搜索框实例代码
查看>>
在Flex中动态设置icon属性
查看>>
采集音频和摄像头视频并实时H264编码及AAC编码
查看>>
3星|《三联生活周刊》2017年39期:英国皇家助产士学会于2017年5月悄悄修改了政策,不再鼓励孕妇自然分娩了...
查看>>
linux查看命令是由哪个软件包提供的
查看>>
高级Linux工程师常用软件清单
查看>>
堆排序算法
查看>>
folders.cgi占用系统大量资源
查看>>
路由器ospf动态路由配置
查看>>
zabbix监控安装与配置
查看>>
python 异常
查看>>
last_insert_id()获取mysql最后一条记录ID
查看>>
可执行程序找不到lib库地址的处理方法
查看>>
bash数组
查看>>
Richard M. Stallman 给《自由开源软件本地化》写的前言
查看>>
oracle数据库密码过期报错
查看>>